Copied to
clipboard

G = C2×C422D5order 320 = 26·5

Direct product of C2 and C422D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C422D5, C4236D10, (C2×C42)⋊4D5, (C4×C20)⋊47C22, (C2×C10).22C24, C101(C422C2), (C2×C20).695C23, (C22×C4).409D10, (C2×Dic5).6C23, (C22×D5).4C23, C22.65(C23×D5), C22.70(C4○D20), C10.D441C22, (C23×D5).29C22, C23.317(C22×D5), D10⋊C4.81C22, (C22×C10).384C23, (C22×C20).505C22, (C22×Dic5).75C22, (C2×C4×C20)⋊4C2, C51(C2×C422C2), C10.9(C2×C4○D4), C2.11(C2×C4○D20), (C2×C10).98(C4○D4), (C2×C10.D4)⋊16C2, (C2×C4).650(C22×D5), (C2×D10⋊C4).18C2, SmallGroup(320,1150)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C422D5
C1C5C10C2×C10C22×D5C23×D5C2×D10⋊C4 — C2×C422D5
C5C2×C10 — C2×C422D5
C1C23C2×C42

Generators and relations for C2×C422D5
 G = < a,b,c,d,e | a2=b4=c4=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=bc2, cd=dc, ece=b2c-1, ede=d-1 >

Subgroups: 846 in 246 conjugacy classes, 111 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C422C2, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C422C2, C10.D4, D10⋊C4, C4×C20, C22×Dic5, C22×C20, C23×D5, C422D5, C2×C10.D4, C2×D10⋊C4, C2×C4×C20, C2×C422D5
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C422C2, C2×C4○D4, C22×D5, C2×C422C2, C4○D20, C23×D5, C422D5, C2×C4○D20, C2×C422D5

Smallest permutation representation of C2×C422D5
On 160 points
Generators in S160
(1 86)(2 87)(3 88)(4 89)(5 90)(6 81)(7 82)(8 83)(9 84)(10 85)(11 96)(12 97)(13 98)(14 99)(15 100)(16 91)(17 92)(18 93)(19 94)(20 95)(21 106)(22 107)(23 108)(24 109)(25 110)(26 101)(27 102)(28 103)(29 104)(30 105)(31 116)(32 117)(33 118)(34 119)(35 120)(36 111)(37 112)(38 113)(39 114)(40 115)(41 126)(42 127)(43 128)(44 129)(45 130)(46 121)(47 122)(48 123)(49 124)(50 125)(51 136)(52 137)(53 138)(54 139)(55 140)(56 131)(57 132)(58 133)(59 134)(60 135)(61 146)(62 147)(63 148)(64 149)(65 150)(66 141)(67 142)(68 143)(69 144)(70 145)(71 156)(72 157)(73 158)(74 159)(75 160)(76 151)(77 152)(78 153)(79 154)(80 155)
(1 146 16 151)(2 147 17 152)(3 148 18 153)(4 149 19 154)(5 150 20 155)(6 141 11 156)(7 142 12 157)(8 143 13 158)(9 144 14 159)(10 145 15 160)(21 121 36 136)(22 122 37 137)(23 123 38 138)(24 124 39 139)(25 125 40 140)(26 126 31 131)(27 127 32 132)(28 128 33 133)(29 129 34 134)(30 130 35 135)(41 116 56 101)(42 117 57 102)(43 118 58 103)(44 119 59 104)(45 120 60 105)(46 111 51 106)(47 112 52 107)(48 113 53 108)(49 114 54 109)(50 115 55 110)(61 91 76 86)(62 92 77 87)(63 93 78 88)(64 94 79 89)(65 95 80 90)(66 96 71 81)(67 97 72 82)(68 98 73 83)(69 99 74 84)(70 100 75 85)
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 131 91 121)(82 132 92 122)(83 133 93 123)(84 134 94 124)(85 135 95 125)(86 136 96 126)(87 137 97 127)(88 138 98 128)(89 139 99 129)(90 140 100 130)(101 151 111 141)(102 152 112 142)(103 153 113 143)(104 154 114 144)(105 155 115 145)(106 156 116 146)(107 157 117 147)(108 158 118 148)(109 159 119 149)(110 160 120 150)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 5)(2 4)(6 10)(7 9)(11 15)(12 14)(16 20)(17 19)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(41 50)(42 49)(43 48)(44 47)(45 46)(51 60)(52 59)(53 58)(54 57)(55 56)(61 75)(62 74)(63 73)(64 72)(65 71)(66 80)(67 79)(68 78)(69 77)(70 76)(81 85)(82 84)(86 90)(87 89)(91 95)(92 94)(96 100)(97 99)(101 120)(102 119)(103 118)(104 117)(105 116)(106 115)(107 114)(108 113)(109 112)(110 111)(121 130)(122 129)(123 128)(124 127)(125 126)(131 140)(132 139)(133 138)(134 137)(135 136)(141 155)(142 154)(143 153)(144 152)(145 151)(146 160)(147 159)(148 158)(149 157)(150 156)

G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,146,16,151)(2,147,17,152)(3,148,18,153)(4,149,19,154)(5,150,20,155)(6,141,11,156)(7,142,12,157)(8,143,13,158)(9,144,14,159)(10,145,15,160)(21,121,36,136)(22,122,37,137)(23,123,38,138)(24,124,39,139)(25,125,40,140)(26,126,31,131)(27,127,32,132)(28,128,33,133)(29,129,34,134)(30,130,35,135)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105)(46,111,51,106)(47,112,52,107)(48,113,53,108)(49,114,54,109)(50,115,55,110)(61,91,76,86)(62,92,77,87)(63,93,78,88)(64,94,79,89)(65,95,80,90)(66,96,71,81)(67,97,72,82)(68,98,73,83)(69,99,74,84)(70,100,75,85), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(6,10)(7,9)(11,15)(12,14)(16,20)(17,19)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)(61,75)(62,74)(63,73)(64,72)(65,71)(66,80)(67,79)(68,78)(69,77)(70,76)(81,85)(82,84)(86,90)(87,89)(91,95)(92,94)(96,100)(97,99)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,155)(142,154)(143,153)(144,152)(145,151)(146,160)(147,159)(148,158)(149,157)(150,156)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,106)(22,107)(23,108)(24,109)(25,110)(26,101)(27,102)(28,103)(29,104)(30,105)(31,116)(32,117)(33,118)(34,119)(35,120)(36,111)(37,112)(38,113)(39,114)(40,115)(41,126)(42,127)(43,128)(44,129)(45,130)(46,121)(47,122)(48,123)(49,124)(50,125)(51,136)(52,137)(53,138)(54,139)(55,140)(56,131)(57,132)(58,133)(59,134)(60,135)(61,146)(62,147)(63,148)(64,149)(65,150)(66,141)(67,142)(68,143)(69,144)(70,145)(71,156)(72,157)(73,158)(74,159)(75,160)(76,151)(77,152)(78,153)(79,154)(80,155), (1,146,16,151)(2,147,17,152)(3,148,18,153)(4,149,19,154)(5,150,20,155)(6,141,11,156)(7,142,12,157)(8,143,13,158)(9,144,14,159)(10,145,15,160)(21,121,36,136)(22,122,37,137)(23,123,38,138)(24,124,39,139)(25,125,40,140)(26,126,31,131)(27,127,32,132)(28,128,33,133)(29,129,34,134)(30,130,35,135)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105)(46,111,51,106)(47,112,52,107)(48,113,53,108)(49,114,54,109)(50,115,55,110)(61,91,76,86)(62,92,77,87)(63,93,78,88)(64,94,79,89)(65,95,80,90)(66,96,71,81)(67,97,72,82)(68,98,73,83)(69,99,74,84)(70,100,75,85), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,5)(2,4)(6,10)(7,9)(11,15)(12,14)(16,20)(17,19)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(41,50)(42,49)(43,48)(44,47)(45,46)(51,60)(52,59)(53,58)(54,57)(55,56)(61,75)(62,74)(63,73)(64,72)(65,71)(66,80)(67,79)(68,78)(69,77)(70,76)(81,85)(82,84)(86,90)(87,89)(91,95)(92,94)(96,100)(97,99)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111)(121,130)(122,129)(123,128)(124,127)(125,126)(131,140)(132,139)(133,138)(134,137)(135,136)(141,155)(142,154)(143,153)(144,152)(145,151)(146,160)(147,159)(148,158)(149,157)(150,156) );

G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,81),(7,82),(8,83),(9,84),(10,85),(11,96),(12,97),(13,98),(14,99),(15,100),(16,91),(17,92),(18,93),(19,94),(20,95),(21,106),(22,107),(23,108),(24,109),(25,110),(26,101),(27,102),(28,103),(29,104),(30,105),(31,116),(32,117),(33,118),(34,119),(35,120),(36,111),(37,112),(38,113),(39,114),(40,115),(41,126),(42,127),(43,128),(44,129),(45,130),(46,121),(47,122),(48,123),(49,124),(50,125),(51,136),(52,137),(53,138),(54,139),(55,140),(56,131),(57,132),(58,133),(59,134),(60,135),(61,146),(62,147),(63,148),(64,149),(65,150),(66,141),(67,142),(68,143),(69,144),(70,145),(71,156),(72,157),(73,158),(74,159),(75,160),(76,151),(77,152),(78,153),(79,154),(80,155)], [(1,146,16,151),(2,147,17,152),(3,148,18,153),(4,149,19,154),(5,150,20,155),(6,141,11,156),(7,142,12,157),(8,143,13,158),(9,144,14,159),(10,145,15,160),(21,121,36,136),(22,122,37,137),(23,123,38,138),(24,124,39,139),(25,125,40,140),(26,126,31,131),(27,127,32,132),(28,128,33,133),(29,129,34,134),(30,130,35,135),(41,116,56,101),(42,117,57,102),(43,118,58,103),(44,119,59,104),(45,120,60,105),(46,111,51,106),(47,112,52,107),(48,113,53,108),(49,114,54,109),(50,115,55,110),(61,91,76,86),(62,92,77,87),(63,93,78,88),(64,94,79,89),(65,95,80,90),(66,96,71,81),(67,97,72,82),(68,98,73,83),(69,99,74,84),(70,100,75,85)], [(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,131,91,121),(82,132,92,122),(83,133,93,123),(84,134,94,124),(85,135,95,125),(86,136,96,126),(87,137,97,127),(88,138,98,128),(89,139,99,129),(90,140,100,130),(101,151,111,141),(102,152,112,142),(103,153,113,143),(104,154,114,144),(105,155,115,145),(106,156,116,146),(107,157,117,147),(108,158,118,148),(109,159,119,149),(110,160,120,150)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,5),(2,4),(6,10),(7,9),(11,15),(12,14),(16,20),(17,19),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(41,50),(42,49),(43,48),(44,47),(45,46),(51,60),(52,59),(53,58),(54,57),(55,56),(61,75),(62,74),(63,73),(64,72),(65,71),(66,80),(67,79),(68,78),(69,77),(70,76),(81,85),(82,84),(86,90),(87,89),(91,95),(92,94),(96,100),(97,99),(101,120),(102,119),(103,118),(104,117),(105,116),(106,115),(107,114),(108,113),(109,112),(110,111),(121,130),(122,129),(123,128),(124,127),(125,126),(131,140),(132,139),(133,138),(134,137),(135,136),(141,155),(142,154),(143,153),(144,152),(145,151),(146,160),(147,159),(148,158),(149,157),(150,156)]])

92 conjugacy classes

class 1 2A···2G2H2I4A···4L4M···4R5A5B10A···10N20A···20AV
order12···2224···44···45510···1020···20
size11···120202···220···20222···22···2

92 irreducible representations

dim1111122222
type++++++++
imageC1C2C2C2C2D5C4○D4D10D10C4○D20
kernelC2×C422D5C422D5C2×C10.D4C2×D10⋊C4C2×C4×C20C2×C42C2×C10C42C22×C4C22
# reps183312128648

Matrix representation of C2×C422D5 in GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
900000
090000
001000
000100
0000119
00003230
,
1710000
40240000
001000
000100
0000320
0000032
,
0400000
1340000
00344000
001000
00003440
000010
,
7400000
7340000
00344000
007700
00003440
000077

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,32,0,0,0,0,9,30],[17,40,0,0,0,0,1,24,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[0,1,0,0,0,0,40,34,0,0,0,0,0,0,34,1,0,0,0,0,40,0,0,0,0,0,0,0,34,1,0,0,0,0,40,0],[7,7,0,0,0,0,40,34,0,0,0,0,0,0,34,7,0,0,0,0,40,7,0,0,0,0,0,0,34,7,0,0,0,0,40,7] >;

C2×C422D5 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes_2D_5
% in TeX

G:=Group("C2xC4^2:2D5");
// GroupNames label

G:=SmallGroup(320,1150);
// by ID

G=gap.SmallGroup(320,1150);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,100,1571,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b*c^2,c*d=d*c,e*c*e=b^2*c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽